
PDF Encryption

Research seminar in cryptography

Yauhen Yakimenka

December 15, 2015

1 Introduction

PDF files are arguably the most popular format for electronic documents. In
this report we talk about security of password protection of PDF files, what
kind of encryption is used and in which way.

The contents of the report are as follows. Section 2 describes the inner
format of PDF files. And section 3 concentrates on PDF password protection
itself.

Technical details of the report are based on [1].

2 PDF file structure

Strictly speaking, PDF file is a binary file, i.e. a sequence of bytes. However,
all the controlling elements of the file use only lower 7 bits of the byte and
are plain-text if seen in ASCII encoding.

Moreover, the whole file could be represented as a sequence of ASCII
characters through usage of escape sequences. However, literal strings and
stream objects may use all 8 bits of the byte and in most practical applica-
tions they do. No particular encoding is imposed by PDF standard on the
bytes with values 128–255; they should be considered on a base level just as
byte values. See 2.2 for more details).

2.1 High-level PDF file structure

Basic high-level structure is shown at the Figure 2.1.

1

Header %PDF-1.5

%â~aÏÓ

Body 1 0 obj

...

Cross-reference table xref

0 16

0000000000 65535 f

...

Trailer trailer

<<

/Info 15 0 R

>>

startxref

10487

%%EOF

Figure 1: High-level structure of PDF file

Some notes on the file structure:

• Lines starting with % are considered as comments and ignored by PDF
processing applications.

• The first line is the version of PDF file. File version 1.n corresponds
to Adobe Acrobat software version n.xx (where xx is a subversion of
software).

• It is conventional to put in the second line of the file comment with
some non-ASCII characters so that file type analysing software (like it
is common in Linux systems) know that the file is not a text file.

• Body is a sequence of PDF objects. They represent all the contents of
the PDF file.

• Cross-reference table is a “table of contents” of PDF file, which holds
the list of all objects in the file as well as offset in the file (in bytes)
where the object begins. It simplifies the navigation in random-access
mode.

2

• Trailer contains general information about the file, for example the
number of the object that holds information about encryption of the
file.

• After startxref there is an integer number which is a position in
the file (an offset in bytes from the beginning of the file) where cross-
reference table starts.

The information about the file encryption is kept in an indirect dictionary-
type object referred in the trailer. Example of such an object:

14 0 obj

<<

/V 2

/Filter /Standard

/U (...)

/Length 128

/R 3

/P -3904

/O (...)

>>

endobj

We omitted contents of literal strings (inside of “(. . .)”) because they
contain non-printing characters.

2.2 Object file types

Here we briefly talk about the types of objects in PDF file. Because for
purposes of this report we do not need boolean objects and stream objects,
we omit their description.

Numeric Numeric objects are integers and reals in fixed-dot format.

Literal stings This is the first way to represent byte strings in PDF. In this
case the string is written “as is” and delimited by (and), although
escape sequences (like \n, \t, \\), etc.) can be used:

(This is a literal string,\nthat contains two lines)

3

Hexadecimal strings This is another way to represent the string. A hex-
adecimal string is written as a sequence of hexadecimal digits (0–9 and
either A–F or a–f) enclosed within angle brackets (< and >):

<4E6F762073686D6F7A206B6120706F702E>

Name objects These are just names, which can contain any symbols except
whitespace symbols:

/Name1

/@@!another--

/

/Previous-name-was-empty-name

Array objects Array object is a sequence of heterogeneous objects. In
particular, it can contain nested arrays.

[12 (Hello, world!\n) -.03 [1 2 /Encode] <34FE2A>]

Dictionary objects Dictionary is an associative array. Keys are always
name objects while values could be of any type (including dictionary).

<< /Type /Example

/Subtype /DictionaryExample

/Version 0.01

/IntegerItem 12

/StringItem (a string)

/Subdictionary << /Item1 0.4

/Item2 true

/LastItem (not !)

/VeryLastItem (OK)

>>

>>

4

Indirect objects Any object in PDF file can be labelled as indirect. That
gives an object a unique object identifier by which other objects can
refer it. Indirect object is written as object number and generation
number, followed by the value of the object bracketed between keywords
obj and endobj, e.g.

14 0 obj

[(This is indirect array) 134 .001 [<0fde><24de>]]

endobj

This object can be then referred as 14 0 R wherever the original object
should be placed, e.g.

<< /Version 1

/Subversion .1

/Data 14 0 R

>>

Stream objects To put it simply, stream objects are byte strings of unlim-
ited length. We do not discuss their representation as we do not need
it for the project.

3 PDF protection

3.1 Owner password and user password

PDF’s standard security handler allows access permissions and up to two
passwords to be specified for a document: an owner password and a user

password.
If a user attempts to open an encrypted document that has a user pass-

word, the application should prompt for a password. Correctly supplying
either password enables the user to open the document, decrypt it, and dis-
play it on the screen. If the document does not have a user password, no
password is requested; the application can simply open, decrypt, and display
the document. Whether additional operations are allowed on a decrypted

5

document depends on which password (if any) was supplied when the doc-
ument was opened and on any access restrictions that were specified when
the document was created:

• Opening the document with the correct owner password (assuming it
is not the same as the user password) allows full (owner) access to the
document. This unlimited access includes the ability to change the
document’s passwords and access permissions.

• Opening the document with the correct user password (or opening a
document that does not have a user password) allows additional opera-
tions to be performed according to the user access permissions specified
in the document’s encryption dictionary.

User access permissions are like modifying the document’s contents, copy-
ing, printing, etc. However, it is very important to understand that if the
document has been successfully opened and decrypted, the application has
access to the entire contents of the document. So it is up to the application
to control the user rights to perform certain operations.

Further in this report we will discuss proper encryption only but not the
other permissions restrictions since they are obviously insecure. It is only
string and stream objects that are encrypted. This is so because they are
the object containing the document contents. All the other objects describe
metadata. This is also useful if we need only random access to the objects
(for example, viewing only one page at a time) as it allows to decrypt only
those parts of the document we need. Full encryption would disallow to do
this.

3.2 PDF encryption primitives

The following cryptographic basic algorithms are used in PDF:

RC4 is a symmetric stream cipher. The length of the data does not changed.

AES is a symmetric block cipher. The length of the data is rounded up to
to a multiple of the block size. In PDF block size is always 16 bytes.
The padding scheme used with AES is PKCS#5.

MD5 is a message-digest algorithm.

In the next subsection we will discuss how these standard algorithms are
used to encrypt data.

6

3.3 PDF encryption algorithms

The following values are used as input for encryption routines:

password(s) User and, probably, owner passwords. User password is
required for encryption. Owner password is used only if
it is set;

pad str Fixed 32-bytes-long string used for padding.
/Length Length of the key. Value is stored in encryption dictio-

nary object in PDF file.
/ID It is array of two byte strings that are generated when

PDF file is first time created. There are no strict rules
on how to generate it. Stored in trailer.

/P 4-byte mask that represents allowed actions (not secure
as it depends on PDF viewer software only). It is stored
in file encryption dictionary object as signed integer.

Figure 2: Algorithm to produce /O.

With these values and algorithm at Figure 2 one can produce /O value,
that is stored in encryption dictionary object.

7

/O value is then used in algorithm at Figure 3 to produce an encryption
key.

Figure 3: Algorithm to produce the encryption key n bytes long.

Further, with algorithm at Figure 4 one can produce /U value, that is
also stored in encryption dictionary object.

Algorithm to check the validity of the password is easy. One runs algo-
rithm from Figure 4 except the last step and compares obtained value with
first 16 bytes of /U value stored in PDF file.

3.4 Proof-of-concept script

The proof-of-concept script has been developed in Python 3. The repository
of the script is available here:
https://bitbucket.org/jjauhien/pdfcrypt/src.

3.5 Security of PDF encryption

As it was mentioned before, restriction on allowed actions is not secure at
all, as it is controlled entirely on reader software.

Having empty owner password breaks all the encryption.

8

https://bitbucket.org/jjauhien/pdfcrypt/src

Encryption key K

key generation alg:
iteration i: XOR each byte

of K with byte whose value is i
iteration i produces Ki

fixed pad string first element of /ID

MD5

RC4

repeat 20 times

random 16 bytes
concat

Output /U

Figure 4: Algorithm to produce /U.

There are many known attacks on both RC4 and MD5 used in algorithms
used for key generation (see [2] and [3], respectively). However, since these
routines are used many times, further research is needed.

4 Conclusion

Basic options of PDF encryption were presented. At the moment proof-of-
concept script is still work in progress.

References

[1] PDF Reference, fourth edition: Adobe Portable Document Format ver-
sion 1.5.

[2] Klein, Andreas. “Attacks on the RC4 stream cipher.” Designs, Codes and

Cryptography 48.3 (2008): 269-286.

9

[3] Wang, Xiaoyun, and Hongbo Yu. “How to break MD5 and other hash
functions.” Advances in Cryptology–EUROCRYPT 2005. Springer Berlin
Heidelberg, 2005. 19-35.

10

	Introduction
	PDF file structure
	High-level PDF file structure
	Object file types

	PDF protection
	Owner password and user password
	PDF encryption primitives
	PDF encryption algorithms
	Proof-of-concept script
	Security of PDF encryption

	Conclusion

